
Proceedings of ICAPP 2014
Charlotte, USA, April 6-9, 2014

Paper 14384

NEAMS MeshKit: Nuclear Reactor Mesh Generation Solutions

Rajeev Jain and Timothy J. Tautges

Argonne National Laboratory, Argonne, IL 60439
Tel: 630-252-3176, Fax: 630-252-5986, Email: jain@mcs.anl.gov

Abstract – NEAMS MeshKit module is capable of generating geometry and meshes that accurately
describe the computational model for simulating a variety of nuclear reactors. MeshKit uses a
graph-based process for specifying the overall meshing problem, with graph nodes representing
meshing and other operations, and graph edges as dependencies between those operations. In our
previous papers on Reactor Geometry (and Mesh) Generation (RGG) tool in MeshKit: basic
working, examples of models generated using serial and parallel version of the tool were
presented. In this paper, we briefly describe the MeshKit design philosophy and list currently
available algorithms for Hex/Quad, Tet/Tri along and other helper-meshing algorithms in
MeshKit. New keywords and features introduced to RGG are highlighted with the help of
examples. Reactor assembly examples include the XX09 assembly used in Shutdown Heat Removal
Tests (SHRT) that demonstrated passive safety features of EBR-II Experimental Breeder Reactor
and an Advance Burner Test Reactor (ABTR) fuel assembly. Reactor core examples include the
ABTR core model with restraint rings, homogenized High Temperature Gas-cooled Reactor
(HTGR) and homogenized EBR-II core model with detailed XX09 assembly.

I. INTRODUCTION

Mesh generation is a challenging field of science that

has made rapid advancement over the years. New
discretization techniques, improvements in computer
hardware and robust solver methods have driven the
research in this field. While several open source and
commercial mesh generation tools were already available
when this project was started, each of these tools were
deficient in some way, either being too restrictive in their
licensing (e.g. GPL), focused on only one specific meshing
technology (triangles, tetrahedral), or lacking support for
other parts of the meshing process (e.g. geometric model
query). MeshKit is meant to overcome these problems, as
well as to serve as a delivery vehicle for specific meshing
tools and algorithms for various applications. MeshKit uses
a graph-based process for specifying the overall meshing
approach, with graph nodes representing meshing and
other operations, and graph edges as dependencies between
those operations. This approach supports the traditional
BREP-driven meshing process, but also supports more
complex, multi-step meshing procedures, like post-mesh
boundary layer generation, mesh generation then
refinement, and assembly of large meshes using
read/copy/move operations.

Preparation of a model suitable for analysis is an
important step in any physics simulation. A nuclear reactor
comprises of ducts, fuel rods, control rods, cladding, load
pads, restraint rings, grid spacers, coolant flow regions,

inter-assembly gaps and other instrumentation pieces.
Detailed modeling of all the pieces and naming of material
and boundary conditions in the core model is often very
tedious and hard to perform manually. NEAMS MeshKit
module is an effort to simplify and minimize the human
interaction during this process. MeshKit is capable of
generating geometry and meshes that accurately describe
the computational model for heat-transfer, fluid mechanics,
neutronics, structural mechanics and other simulations.
Two key algorithms - AssyGen and CoreGen are termed as
the RGG tool in MeshKit. These algorithms are presented
in our previous paper titled “Creating Geometry and Mesh
Models for Nuclear Reactor Core Geometries Using a
Lattice Hierarchy-Based Approach” [1]. This paper cites
the problems encountered during utilizing conventional
meshing tools for modeling nuclear reactors. A survey of
all existing tools is presented and a novel three-stage
approach is described. A very few efforts have been found
to develop solutions for automatic the reactor model
generation. RGG is the first tool that is capable of
generating assembly and core mesh models of hexagonal
and rectangular reactors automatically. The three-stages
workflow described in the paper is 1. AssyGen, 2. Meshing
and 3. CoreGen. In AssyGen stage, reactor assembly
geometry is generated and CUBIT [2] meshing script is
created. Next, meshing of assembly geometry can be
performed optionally using the CUBIT script generated in
AssyGen stage or using MeshKit algorithms or using
external meshing tools. Finally, the CoreGen program

Proceedings of ICAPP 2014
Charlotte, USA, April 6-9, 2014

Paper 14384

creates the reactor mesh by arranging all the assembly and
interstices meshes. This workflow allows a balance
between automation and user-intervention; RGG supports
both text file-based automation as well as manual
intervention to add model details (e.g. grid spacers).
Nomenclature for representation of full, 1/12th and 1/6th
(hex-flat and hex-vertex) hexagonal reactor core lattice,
along with rectangular lattice is described in the paper.
CoreGen also has features for creating geometry only
models. In another approach presented in the paper, 2D
mesh creation and a special four-stage process is described,
wherein a 2D mesh model for the core is generated,
followed by extrusion into the third dimension. This
approach requires about half the execution time of the
original three-stage process, mostly because of a large
reduction in the number of vertices being compared for
merging. It is important to note that the nodes on faces of
different assemblies that come in contact with each other
must be matching for this process to work. This can be
easily achieved for hex-meshed assembly meshes by
setting same intervals on all side surfaces. For generating
tetrahedral core meshes with this three-stage process the
primary difficulty is the careful application of surface
splitting, mesh reflection, and mesh copying, to ensure
both translational and rotational symmetry of mesh on the
side surfaces of assemblies. Propagation of mesh metadata
during the core mesh generation (CoreGen) stage is
described in detail. Several examples of hexahedral and
tetrahedral core mesh generation for a variety of nuclear
reactors are also presented. It is found that the total human
time required for modeling a 1/6th of a Very High
Temperature Reactor (VHTR) core drops by a factor of 50
to 100. Meshes created by RGG have been successfully
used by a variety of physics codes such as Nek5000 (open
source CFD code), Diablo (Structural mechanics code),
PROTEUS (Neutronics code) and STAR-CCM+ (black
box commercial CFD code).

In a follow-up paper titled “RGG: Reactor Geometry
(and Mesh) Generator” [3] algorithm and results of parallel
version of CoreGen are described. The original three-stage
approach for generating lattice-based models was extended
in several ways from that reported in the previous paper.
Parallel version of CoreGen allows the problem to fit in
memory, allowing creation of large reactor meshes that
would otherwise be impossible to create using
conventional meshing tools. The central idea of this tool is
based around distribution of copy/move and merge work
among the processors utilizing the symmetric lattice-based
arrangement of pins and assemblies that form the reactor
core. Superlinear speedups are observed, thereby
significantly reducing the total time required for generating
large models. Several examples including VHTR models, a
¼ PWR reactor core, and a Full Core model for MONJU
are reported.

In this paper, our objective is to describe the unique
design of MeshKit and briefly describe Hex/Quad, Tet/Tri

and other meshing algorithms available in MeshKit. In-
order to utilize the current state-of-art and popular
packages, MeshKit supports interoperability with other
packages. We have interfaces to popular packages such as
CAMAL, Triangle, NetGen etc. The graph-based design
enables all these packages to interoperate and solve a
particular meshing problem. In Section 2, we highlight all
required and optional packages that MeshKit relies on for
various functionalities. Section 2 also describes the design
philosophy and overall organization of the library. New
results from AssyGen and CoreGen are presented in
Section 3 and Section 4 respectively. Section 3 and 4 also
include the details of new features such as automatic
creation of AssyGen input files based on different material,
boundary conditions and assembly specification of the
core. CoreGen’s ability to create core geometry models has
been utilized for the creation of interstices mesh that
includes restraint ring in the ABTR core model. Finally,
we present the conclusions and future work in Section 5.

II. MESHING ALGORITHMS

Most current meshing environments are targeted

toward a Boundary REPresentation (BREP)-based
approach, backed by a geometric model and associated
topology (vertices/edges/faces/regions and adjacency
relations between them). The meshing process usually
proceeds by meshing BREP entities in increasing
topological dimension, starting with vertices, then edges,
and so on. However, this model is deficient in several
ways. First, not every meshing process needs or has a
geometric model representing the entire domain to be
meshed. The best example of this is the RGG tool, where
individual assembly types have geometric models but are
then copy/moved into a lattice of assembly models forming
a reactor core. Second, a meshing procedure may not
involve only a once-through meshing of each BREP entity;
again, RGG is a good example of this, where the first part
of the process involves meshing BREP models, but the last
step involves copy/moving mesh subsets into a larger core
lattice. Finally, the procedure-driven approach to meshing
represented by most CAD-based meshing tools fails to
capture the parallelism and dependency structure that can
be found in most meshing problems (including BREP-
based ones); representing and exploiting this richer
structure provides more flexibility while still being
applicable to BREP-based problems.

MeshKit models the general meshing problem as a
directed graph-based process, with graph nodes
representing individual steps in the process and graph
edges representing dependencies between those steps. For
convenience, the graph always has a single root and leaf
node, with one or more possibly-independent paths
between them. Each graph node represents an explicit step
in the meshing process, whether that involves generation of
new mesh or performing some other operation on existing

Proceedings of ICAPP 2014
Charlotte, USA, April 6-9, 2014

Paper 14384

mesh. The part of the model operated on by that operation
is stored as input for that node, along with any control
parameters specific to the operation. The meshing process
is executed by traversing the graph twice, once in reverse
direction (from leaf to root), to perform necessary setup
actions and create upstream graph nodes not explicitly
created by the application, then in forward direction, to
perform the action represented by each graph node.

Fig. 1(a), (b) and (c) show the steps used for meshing
of a geometric surface bounded by two edges using the
graph-based approach. In this example the steps followed
are similar to conventional BREP-based mesh generation.
For the starting mesh graph, the user specifies a "trimesh"
meshing operation, assigned to the surface, then the setup
traversal in trimesh operation determines that it needs a
mesh for the bounding edges, and creates a graph node
representing that operation (an EqualEdgeMesh meshing
operation applied to edges E1 and E2). Continuing the
traversal, the setup operation on the EqualEdgeMesh node
determines that the two bounding vertices must be meshed;
this is accomplished by creating a VertexMesher graph
node, applied to vertices V1 and V2. The setup operation
on the VertexMesher node creates no new graph nodes, so
the setup traversal terminates at the root node. The graph
nodes with user-specified nodes are colored cyan, and
automatically created nodes are colored magenta. Note that
a given node can represent a meshing operation applied to
multiple entities in the BREP model. In practice, this
greatly simplifies the mesh graph, with no loss of detail in
the overall meshing process. The execute phase traverses
the graph in the forward direction, generating mesh for the
geometric vertices in the first (non-root) node, for
geometric edges in the second node, and finally the surface
mesh in the third node.

Fig. 1. (a) User specified Trimesh algorithm

Fig. 1. (b) Setup phase and automatically created nodes

Fig. 1. (c) Final graph with execute phase with model.

In a more complicated example, Fig. 2 shows a users-

specified graph that generates a reactor assembly with a
boundary layer mesh from scratch. AssyGen operation
generates geometry from a text-based input file describing
a reactor assembly. This geometry is input to the
QuadMesher which feeds into the ExtrudeMesh operation
to generate a 3D mesh. Then PostBL, based on user-
specified boundary layer thickness, bias etc. generates the
desired boundary layer elements for the model. Similar to

the previous example, in this example also EdgeMesher
and VertexMesher graph nodes are automatically created.

Fig.	
 2.	
 User specified digraph for creating reactor assembly

mesh with boundary layers.

MeshKit contains all basic meshing algorithms
required for mesh generation. The goal with MeshKit is to
be able to quickly develop algorithms and tools. In a short
span of two-three years several new applications and
algorithms have developed and published. In the
subsequent section, we classify all the algorithms available
in MeshKit based on element type. More details and
documented examples can be found in MeshKit doxygen
page [4].

II.A. Hex/Quad Meshing Algorithms

Hex meshing algorithms available in MeshKit are

based on extrusion or sweeping of a quad mesh.
Algorithms for supporting hex/quad meshing are listed in
this section.

II.A.1 TFI Mapping

Trans-finite interpolation mapping generates an all-

quad mesh by transfinite interpolation with i, j parameters.
Fig. 3. shows the input geometry and output mesh to TFI
mapping algorithm from an example documented in
MeshKit code repository.

(a) (b)	

Fig. 3. (a) 2D Rectangle geometry, (b) A meshed
2D rectangle.

II.A.2 CAMAL Paver

CAMAL [5] is a proprietary mesh library developed at

Sandia National Library. CAMALPaver has been
integrated into MeshKit for generating quadrilateral
elements using a paving scheme. It must be noted
CAMALPaver internally creates an EdgeMesher and
VertexMesher graph node that are coded into MeshKit.

Proceedings of ICAPP 2014
Charlotte, USA, April 6-9, 2014

Paper 14384

II.A.3 JaalQuadMesher

Quad mesher is a MeshKit native algorithm that

produces a high quality, isotropic all-quadrilateral meshes
for an arbitrary complex surface geometry. Two basic steps
used in this algorithm are triangle to quad mesh conversion
and global mesh cleanup operation. Specific details and
results are published [6].

II.A.4 ExtrudeMesh

ExtrudeMesh is a simple extrusion algorithm that

reads in an already meshed 1D or 2D elements and creates
a 2D or 3D mesh respectively. It also allows for extrusion
to be specified along a rotation path. In-order to produce a
mesh that is fit for simulation, material and boundary
conditions from the initial mesh are propagated to the final
mesh by specifying grouping sets.

II.A.5 Sweeper

OneToOneSweep algorithm generates an all

hexahedral mesh by sweeping the source mesh to the target
surface. It uses a harmonic function to mesh the target
surface with good quality, avoiding expensive smoothing
operations. The interior nodes between the source and
target surface are generated using cage-based deformation
method. Implementation details and results of sweeping
algorithm can be found in this year’s proceedings of
International Meshing Roundtable [7].

II.B. Tet/Tri Meshing Algorithms

MeshKit interfaces with robust automatic Tet/Tri

meshing algorithms that have already been developed. This
section lists all such the algorithms. Tri-meshing
algorithms listed in this section have a restrictive license.
Our current work includes incorporation of an open-source
algorithm for Tri-meshing.

II.B.1 CAMALTriAdvance, CAMALTetMesher

CAMAL is a proprietary mesh library developed at

Sandia National Library. CAMALTriAdvance and
CAMALTetMesher are integrated into MeshKit for
generating triangular and tetrahedral meshes respectively.
It must be noted that both these operations internally create
an EdgeMesher and VertexMesher graph node.

II.B.2 NGTetMesher

NetGen [8] is an LGPL licensed automatic tetrahedral

mesh generation library. MeshKit has an interface to this
library for generating tetrahedral meshes.

II.B.3 TriangleMesher

The Triangle library [9] is widely used for generating

exact Delaunay triangulation, constrained Delaunay
Triangulation, conforming Delaunay triangulations,
Voronoi diagrams and high-quality triangular meshes. It
has a restrictive license for commercial use. MeshKit
provides an interface for this library for generating 2D
triangular meshes.

II.C. Other Algorithms

II.C.1 PostBL

PostBL mesh operation generates boundary layer

meshes for an already existing mesh model.
Implementation details and results can be found in the
proceedings of International Meshing Roundtable 2013
[10]. PostBL can handle triangular, quadrilateral,
tetrahedral and hexahedral meshes. Fig. 4 shows a 19-
assembly reactor core that needed meshes along the
assembly wall and fuel pin boundary for better fluid flow
simulations.

 (a) (b)

 (c)

Fig. 4. 19 assembly reactor core mesh: (a) Original mesh. (b)
Close-up of original mesh showing fluid and gap regions. (c)
Close-up of original mesh showing boundary layers on fluid and
gap regions.

Proceedings of ICAPP 2014
Charlotte, USA, April 6-9, 2014

Paper 14384

II.C.2 Interval matching

Interval assignment is the problem of assigning an

integer number of mesh edges to each curve so that the
assigned value is close to the goal value, and all containing
surfaces and volumes may be meshed independently and
compatibly. It is one of the key algorithms for meshing
complicated geometries and preventing meshing
algorithms to fail from invalid sizing specified by the user.
Interval assignment algorithm in MeshKit uses a new
optimization function and approach (NLIA), it is found to
be faster and more efficient compared to other interval
matching algorithms. Integration of this algorithm with
other MeshKit algorithms is work in progress.
Implementation details and findings of interval matching
algorithm can be found in the proceedings of International
Meshing Roundtable 2013 [11].

II.C.3 Qslim mesh decimation

Source code of qslim mesh decimation library has

been integrated in MeshKit. This algorithm uses edge
collapse as a primary simplification method. The cost of
each possible edge collapse is established using quadric-
based error concept.

II.C.4 Mesquite mesh optimization

Mesquite [12] is an open-source mesh quality

optimization package developed at Sandia National
Laboratory. It can be used as a standalone operation or it
can be coupled with other MeshKit algorithms for mesh
quality optimization at the end of mesh generation
operation.

II.C.5 MakeWaterTight

MakeWaterTight tool removes gaps, overlaps and

discontinuous topology between surfaces. It uses MOAB to
read facet based models produced by a solid modeling
engine in CGM. It is assumed that the feature size is
greater than the facet tolerance, and the facet tolerance is
greater than the merge tolerance. Faceted surfaces are
skinned to resolve their boundary. Bounding edges of each
faceted surface are assembled into loops. Loops are cut
into arcs that correspond to faceted curves, using geometric
vertices. Each arc is then sealed to its corresponding curve
by using node-node and node-edge contraction. The result
is a watertight model in which adjacent surfaces share the
same faceted edges. Implementation details can be found
in an International Meshing Roundtable publication [13].

II.C.6 Structured Block Mesher

This mesh operation generates a simple rectangular

structured mesh, sized to completely surround the input

model entities using a geometric entities bounding box.
Options for grid size, mesh representation and axis type are
defined for providing more control over the mesh
generation process.

II.C.7 Embedded Boundary Mesher

EBMesh tool can generate Cartesian meshes for

solvers that use embedded boundary algorithms. It uses
ray-tracing technique based on hierarchical Oriented
Bounding Box (OBBs) in MOAB. Each mesh cell is
distinguished as being inside, outside or on the boundary of
the input geometry, which is determined by firing rays
parallel to x/y/z coordinates. EBMesh tool can directly
import CAD-based solid model formats and facet-based
formats, output from SCDMesh can be also used as input
to EBMesh. Boundary cells created by this tool have edge-
cut fraction and volume cut fraction information for each
material. Detailed explanation, results and comparison with
other related tools could be found in an International
Meshing Roundtable paper published in 2010 [14].

II.D. Application Specific Algorithms

All the operations listed in this section can be

combined and setup as a graph to solve a particular
meshing problem. RGG is the nuclear reactor application
in MeshKit. Two specific mesh operations implemented for
this application are AssyGen and CoreGen. MeshKit also
includes three algorithms for generating mesh models of
ice sheets. Ice sheets algorithm is composed of a collection
of tailored unstructured meshing and mesh-based geometry
algorithms in MeshKit. Details of ice sheets algorithms are
not presented here.

II.D.1 AssyGen

AssyGen [1] is the first step of the three-step core

mesh creation process, it reads an input file describing a
reactor assembly lattice and generates an ACIS or OCC –
based geometry file. The second step is meshing, after the
first step, user may choose to perform meshing using the
CUBIT mesh script generated by AssyGen or using
meshing algorithms in MeshKit. AssyGen and meshing
steps must be performed for each assembly separately.

II.D.2 CoreGen

CoreGen [1] tool reads an input file describing the

reactor core arrangement and generates the reactor core
mesh or geometry from its component assemblies mesh or
geometry files respectively. CoreGen uses CopyMesh,
ExtrudeMesh, CopyGeom and MergeMesh algorithms
available in MeshKit. A makefile is generated by CoreGen
to automate the AssyGen and CoreGen processes for all
assemblies that form the reactor core.

Proceedings of ICAPP 2014
Charlotte, USA, April 6-9, 2014

Paper 14384

III. RESULTS FROM ASSYGEN ALGORITHM

All the models described in this section were run by
three physics simulation codes: PROTEUS (neutronics),
Diablo (structural mechanics) and Nek5000 (thermo-
hydraulics). Nek5000 and Diablo used the same hexahedral
mesh. Nek5000 is a spectral element code, so it required
hex27 elements. Diablo and PROTEUS are finite element
codes that used hex8 elements. Coupled physics simulation
results are not presented in this paper.

III.A. XX09 Assembly Mesh

 Instrumented XX09 assembly was used in Shutdown

Heat Removal Tests (SHRT) that demonstrated passive
safety features of the EBR-II Experimental Breeder
Reactor. The specific test from which this problem is
derived is SHRT17, which is a loss of flow with SCRAM
experiment. This test configuration was selected for the
multi-physics demonstration because of the availability of
temperature and other validation data available from the
experiment. Geometry was generated by AssyGen, new
feature to model conical pins was developed. Mesh files
for all simulation codes are generated by making small
modifications to the CUBIT journal files automatically
created by AssyGen. For initial coupled simulations
Nek5000 and Diablo mesh had 356k hex27 and hex8
elements respectively, whereas, the PROTEUS mesh has
505k hex8 elements. Fig. 5 shows XZ-plane section views
of the entire assembly from Inlet (Fig. 5 (i)) to Outlet (Fig.
5 (iv)). Material coloring is as follows: pink: stainless-
steel, yellow: sodium, blue: clad, light-blue: fuel, white:
bond-sodium and red: fission-gas.

Fig. 5. (i) Cylindrical inlet transitions to form a cone from left to
right. (ii) Interface of inlet sodium and pointed conical lower

plug, also shows the fuel. (iii) Top of fuel filled with bond sodium
and fission gas. (iv) Outlet sodium.

The oblique-sectioned view in Fig. 6 highlights
conical fuel pin, bond sodium, clad and stainless steel outer
ducts. Elements are observed to have a low aspect ratio, as
the mesh of the circular cylinder pins region converges to
the pointed conical tip. The number of interval along the
height can be adjusted to produce elements with higher
aspect ratio elements, for this particular mesh a coarse
interval was chosen.

Fig. 6. Oblique sectioned view showing meshing complexities.

This assembly mesh model was run in parallel for
performing coupled physics simulations. Partitioning of
mesh was performed using the ‘mbpart’ tool available in
MOAB [15]. Fig. 7(i), 7(ii) and 7(iii) show the partitioned
mesh with each color representing a processor. Fig. 7(iv)
shows the fuel pin and flowmeter arrangement. It must be
noted that this arrangement is not visible from the skin of
the mesh; a Z-section of the mesh along the fuel region is
required to display the pins.

Fig. 7. XX09 assembly (i) Inlet region partitioned mesh (ii)
Isometric view of 1024 partitions (iii) Top view of the outlet
partition (iv) Top view of mesh showing 61 pins. Mesh is
partitioned using the mbpart utility in MOAB. Shows a the
sectioned top view of the 61 pin (Note: 59 fuel pins + 2
flowmeters (bottom left)) assembly.

Proceedings of ICAPP 2014
Charlotte, USA, April 6-9, 2014

Paper 14384

III.B. ABTR Fuel Assembly With Load Pads

AssyGen was used to model the ABTR fuel assembly

with load pads and inter-assembly gaps. Load pads are
modeled by specifying separate material along the duct at
ACLP and TLP locations shown in Fig. 8(b). Inter-
assembly gap regions are divided in two equal parts and
modeled with every assembly. All the inter-assembly gaps
are united when CoreGen assembles the assembly meshes
to form to create the core model shown in Fig. 10. Outlet
plenums are modeled on top of each assembly for
specifying outlet boundary conditions in thermo-hydraulics
simulations. The assembly consists of 217 fuel pins.
Dimension of one of the pins are shown in Fig. 9. Each pin
for a particular axial height consists of four geometric
volumes. Hexahedral meshes are obtained by specifying
the intervals on the edges, meshing the surfaces and
extrusion of the surface mesh. Detailed fuel assembly
geometry (non-homogenized, Fig. 8(a)) with varying
material specification for a fuel element cross-section
consists of over 15k geometric volumes. It takes AssyGen
~20 mins to create the non-homogenized geometric model.

(a) (b)
Fig. 8. (a) Detailed (non-homogenized ABTR fuel assembly). (b)
Three homogenized fuel assemblies showing the Above Core
Load Pad (ACLP), Top Load Pad (TLP) and outlet plenum
regions.

New keywords “NumSuperBlocks” and

“SuperBlocks” were introduced to combine material blocks
for different physics. “NumSuperBlocks” specifies the
number of superblocks and “SuperBlocks” specifies the
blocks to be merged to form the new superblock. For
example, neutronics models each fuel pin with tens of
materials along the height, whereas, thermo-hydraulics
consider all the fuel-pins to be one material. These
keywords help in creation of one-mesh files that can be
used by all physics simulations. Materials and boundary
conditions that are not required by a particular physics are
ignored. It must be noted that superblocks are not required

when modeling meshes for individual physics separately.
Time taken to create the homogenized geometry and mesh
for this fuel assembly is 2 mins. The mesh has 2.5k hex
elements.

Fig. 9. (a) Section of metal fuel pin showing dimensions in cold
condition.

IV. RESULTS FROM COREGEN ALGORITHM

This section presents three different hexagonal reactor
models: ABTR, HTGR and EBRII, modeled using the
CoreGen tool. ABTR and EBRII reactor core models were
used for performing coupled simulations using the SHARP
simulation framework [16]. HTGR mesh was used by the
PRONGHORN code developed at Idaho National
Laboratory [17].

IV.A. ABTR Core Model With Restraint Rings

Detailed configuration with I-J numbering and the

number of occurrences of each of the assembly types is
shown in Fig. 10. Section III.B highlights one of the fuel
assembly models in this reactor. Control, shield, reflector
and other assemblies are not shown in this paper. Since, all
assemblies have varying properties in axial direction, a
common axial configuration must be determined to satisfy
all the geometries. This is required, since all the eight
assemblies that form this 199-assembly core model must
have coincident nodes along the height for creation of a
conformal mesh that is fit for simulations.

Homogenized fuel, shield and reflector assemblies are
same in-terms of geometry domains, but they have
different number of material and boundary condition.
Control assembly has an additional duct and sodium layer
in each assembly. All 199 assemblies must be modeled as
different assemblies with different materials to enable
specification of varying densities, inlet/outlet boundary
conditions etc. The commonality is 8 assembly mesh files
that are arranged in 199 different locations in the core. In-
order to overcome the problem of manually creating 199
separate AssyGen files the CreateMatFiles keyword was
introduced. This keyword creates a AssyGen files with
name “IJ”.inp and start material and boundary condition
numbers based on “IJ”. This enables a numbering scheme
that is manageable and helps prescribe temperature and
flow-rate etc. for a particular assembly easily.

Lower
str

N
os

ep
iec

e
50

.24
 cm

U
pp

er
 ga

s
 p

len
um

w
ith

 bo
nd

 so
d

ium
19

.76
 cm

Upper Structure
(assumed homogeneous

mixture of lower reflector
material)

Lo
w

er
 re

fle
ct

o
r

60
.30

 cm
Fu

e
l

84
.41

 cm
U

pp
er

 ga
s

 p
len

um
96

.80
 cm

Lower
str

C C’

A A’

B B’

H
an

d
lin

g
 so

ck
et

30
.15

 cn

Lower Structure
(assumed homogeneous
mixture of sodium (70 %) and

structure (30%))

Fuel Pin Assembly

Section of AA’

Section of BB’

Section of CC’

38
.1
9

Proceedings of ICAPP 2014
Charlotte, USA, April 6-9, 2014

Paper 14384

	

Fig. 10. ABTR core configuration with lines of constant logical I,
J assembly regions.

Geometry only CoreGen feature was utilized to create

the outer covering with restraint rings shown in Fig. 11.
Restraint rings are shown in yellow and red color. All the
assembly geometries created by AssyGen are first
copy/moved to create a geometric core model. Another
separate circular pin (ring) with the same axial divisions as
all the other assemblies is created using AssyGen. This pin
is subtracted from the geometric core model to create the
outer core model and obtain the outer covering geometry
shown in Fig. 11. Meshing, material, boundary
specification and gap between TLP and ACLP are modeled
after this step. The gap is modeled by shrinking the inner
surfaces by the gap dimensions. CoreGen is run to create
the final homogenized core model from assembly meshes
and this outer covering mesh. The final mesh consists of
500k hexahedral elements. Structural mechanics and
thermo-hydraulics mesh consists of 1.5k material blocks,
whereas, the neutronics mesh consists of 7.5k material
blocks. Neutronics mesh requires more material blocks
along the height of the fuel pins. It takes less than 5 mins
for CoreGen to assemble the core in serial mode.

Fig. 11. Outer covering of ABTR core model showing two
restraint rings.

IV.B. Homogenized HTGR Core Model

Only 6 input files with 20 lines are needed to generate

the High Temperature Gas Reactor (HTGR) model shown
in Fig. 12. There are 76 different types of assemblies
(based on material) and 331 total assemblies that form this
HTGR full core model. The process is completely
automatic and modifications to the mesh/geometry are easy
once the process is setup using a makefile. It takes 10 mins
to create the assembly geometry and mesh from AssyGen
input files. CoreGen takes less that one minutes to create
the full core model. . A new scheme for radially numbering
of materials was introduced because the simulation code
that used this mesh was designed to read radially
increasing material blocks.

This model contains 864 different fuel materials
(right) and 876 materials in total. The complexity and
details can be added to the individual assemblies and mesh
for other physics can be created using the same setup.
Simulation and results obtained from this modeled are
presented in a report [16].

Fig. 12. Homogenized HTGR reactor model showing (a) Other
assemblies (b) Fuel assemblies.

IV.C. EBR II Core With XX09 assembly

A homogenized EBRII core mesh with detailed XX09

assembly is shown in Fig. 13. This core model formed of
217 assemblies; the model comprises of 7.9M hex8
elements for neutronics mesh, 4.4M hex8 elements for
structural mechanics mesh and 4.4M hex27 elements for
thermo-hydraulics mesh. The geometry for XX09 and
other homogenized assemblies are generated using
AssyGen, then meshing is performed using CUBIT and
finally CoreGen creates the resulting EBRII core mesh. For
the six assemblies that surround the XX09 assembly,
meshing is performed manually by specifying same
interval on the edge shared with XX09 assembly. Coarse
edge interval is assigned on all other edges.

Proceedings of ICAPP 2014
Charlotte, USA, April 6-9, 2014

Paper 14384

Fig. 13. Homogenized EBRII core with XX09 assembly. Inlet,
outlet, isometric and sectioned views are zoomed to show the fuel
and other instrumentation pins in the model.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we briefly describe the MeshKit design
philosophy, the algorithms available in MeshKitv1.1, and
new reactor assembly and core models modeled using the
AssyGen and CoreGen tool respectively. New features
were introduced and these tools and were used to
efficiently and quickly create models of homogenized
ABTR, HTGR and EBRII reactors. At present, for the
purposes of testing the simulation code, homogenized
models were created. Fully detailed, non-homogenized
models with fuel, control and other instrumentation pins
can be created using RGG.

MeshKit uses a graph-based process for specifying the
overall meshing approach, with graph nodes representing
meshing and other operations, and graph edges as
dependencies between those operations. This approach
supports the traditional BREP-driven meshing process
found in most other meshing tools, while also enabling a
wider variety of meshing processes not strictly based on
BREP models. MeshKit contains meshing algorithms for
both tri/tet and quad/hex mesh generation. In some cases
these algorithms are part of 3rd party meshing tools
wrapped by MeshKit, while in other cases the algorithms
are implemented directly in MeshKit. The graph-based
design enables RGG to interoperate with other meshing
algorithms and allow setup of complete reactor mesh
generation problem from creation of assembly geometry to
core mesh creation in the same program. Due to its unique
and modular approach of development, we believe that the
development of this library will benefit other user and
developer communities outside the nuclear reactor
modeling community.

In the near future, we plan to integrate of interval
assignment with other algorithms in MeshKit, add more
examples to the doxygen-based documentation and

formalize CoreGen/AssyGen process with graph-based
design in MeshKit. Several new developments in the area
of mesh refinement, automatic mesh scheme selection,
support for higher order elements and integrating a mesh
quality evaluation library are also planned.

ACKNOWLEDGMENTS

We thank the Fathom group at Argonne, who

maintains the libraries required by MeshKit. This work
was supported in part by the U.S. Department of Energy
Office of Nuclear Energy Nuclear Energy Advanced
Modeling and Simulation (NEAMS) Program; by the U.S.
Department of Energy Scientific Computing Research,
Office of Science; and by the U.S. Department of Energy’s
Scientific Discovery through Advanced Computing
program, under Contract DE-AC02-06CH11357.

REFERENCES

1. Tautges, T. J., and Jain, Rajeev, “Creating geometry
and mesh models for nuclear reactor core geometries
using a lattice hierarchy-based approach”. Engineering
with Computers, 28(4), 319-329. (2011).

2. Sjaardema, G.D, Tautges, T. J, Wilson, T. J, Owen, S.
J, Blacker, T. D, Bohnhoff, W. J, Edwards, T. L, Hipp,
J. R, Lober, R. R, and Mitchell, S. A., “CUBIT mesh
generation environment, users manual”, vol 1. Sandia
National Laboratories, Albuquerque. (1994).

3. Jain, Rajeev and Tautges, T. J., “RGG: Reactor
Geometry (and Mesh) Generator”. International
Congress on the Advances in Nuclear Power Plants,
Chicago. (2012).

4. MeshKit doxygen page:

http://www.mcs.anl.gov/~fathom/meshkit-
docs/html/index.html

5. CAMAL - The CUBIT Adaptive Meshing Algorithm

Library, Sandia National Laboratories, Albuquerque.

6. Verma, C. S., and Tautges, T., “Jaal: Engineering a
high quality all-quadrilateral mesh generator”.
In Proceedings of the 20th International Meshing
Roundtable (pp. 511-530). (2012).

7. Cai, S., and Tautges, T., (2014). Robust One-to-One

Sweeping with Harmonic ST Mapping and Cages:
Post-mesh Boundary Layer Generation Tool.
In Proceedings of the 22nd International Meshing
Roundtable (pp. 1-18).

Proceedings of ICAPP 2014
Charlotte, USA, April 6-9, 2014

Paper 14384

8. Schöberl, J., “NETGEN An advancing front 2D/3D-
mesh generator based on abstract rules”. Computing
and visualization in science, 1(1), 41-52. (1997).

9. Shewchuk, J. R., “Triangle: Engineering a 2D Quaility
Mesh Generator and Delaunay Triangulator”. Applied
Computational Geometry Towards Geometric
Engineering. (pp. 203-222). (1996).

10. Jain, Rajeev, and Tautges, T. J., “PostBL: Post-mesh
Boundary Layer Generation Tool”. In Proceedings of
the 22nd International Meshing Roundtable (pp. 445-
464). (2014).

11. Mitchell, S., “Simple and Fast Interval Assignment
Using Nonlinear and Piecewise Linear”.
In Proceedings of the 22nd International Meshing
Roundtable (pp. 203-221). (2014).

12. Knupp, P., “Mesh quality improvement for SciDAC
applications”. In Journal of Physics: Conference
Series, Vol. 46, No. 1.

13. Smith, B., Wilson, P. and Tautges, T. J., “Sealing
Faceted Surfaces to Achieve Watertight CAD
Models”. In Proceedings of the 19th International
Meshing Roundtable (pp. 177-194). (2010).

14. Kim, H., and Tautges, T. J., “EBMesh: An Embedded

Boundary Layer Meshing Tool”. In Proceedings of the
19th International Meshing Roundtable (pp. 227-
242). (2010).

15. Tautges, T. J, Meyers, R, Merkley, K, Stimpson, C,

Ernst, C., MOAB: A mesh-oriented database,
SAND2004-1592. Sandia National Laboratories,
Albuquerque. (2004).

16. Tautges, T.J., Alvaro Caceres, Rajeev Jain, Hong-Jun

Kim, Jason A. Kraftcheck, and Brandon M. Smith.
"Coupled Multi-Physics Simulation Frameworks for
Reactor Simulation: A Bottom-Up Approach."
International Conference on Mathematics and
Computational Methods Applied to Nuclear
Science and Engineering, (2009).

17. Bingham, A., Ortensi, J., Jain, R., Grindeanu, I., and

Tautges, T., SHARP/PRONGHORN Interoperability:
Mesh Generation. NEAMS Report. INL/EXT-12-27171
(2012).

The submitted manuscript has been created by UChicago
Argonne, LLC, Operator of Argonne National Laboratory
("Argonne"). Argonne, a U.S. Department of Energy
Office of Science laboratory, is operated under Contract
No. DE-AC02-06CH11357. The U.S. Government retains
for itself, and others acting on its behalf, a paid-up
nonexclusive, irrevocable worldwide license in said article
to reproduce, prepare derivative works, distribute copies to
the public, and perform publicly and display publicly, by or
on behalf of the Government.

